Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Synapse ; 77(5): e22279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382240

RESUMO

Previous research reported an age-related decline in brain norepinephrine transporter (NET) using (S, S)-[11C]O-methylreboxetine ([11C]MRB) as a radiotracer. Studies with the same tracer have been mixed in regard to differences related to body mass index (BMI). Here, we investigated potential age-, BMI-, and gender-related differences in brain NET availability using [11C]MRB, the most selective available radiotracer. Forty-three healthy participants (20 females, 23 males; age range 18-49 years), including 12 individuals with normal/lean weight, 15 with overweight, and 16 with obesity were scanned with [11C]MRB using a positron emission tomography (PET) high-resolution research tomograph (HRRT). We evaluated binding potential (BPND ) in brain regions with high NET availability using multilinear reference tissue model 2 (MRTM2) with the occipital cortex as a reference region. Brain regions were delineated with a defined anatomic template applied to subjects' structural MR scans. We found a negative association between age and NET availability in the locus coeruleus, raphe nucleus, and hypothalamus, with a 17%, 19%, and 14% decrease per decade, respectively, in each region. No gender or BMI relationships with NET availability were observed. Our findings suggest an age-related decline, but no BMI- or gender-related differences, in NET availability in healthy adults.


Assuntos
Morfolinas , Proteínas da Membrana Plasmática de Transporte de Norepinefrina , Masculino , Adulto , Feminino , Humanos , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Reboxetina/metabolismo , Morfolinas/metabolismo , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos
2.
Pest Manag Sci ; 79(10): 3773-3784, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37203559

RESUMO

BACKGROUND: Laccase is a key enzyme in the fungal 1,8-dihydroxynaphthalene (DHN) melanin biosynthesis pathway, which is a potential target for the control of pathogenic fungi. In our previous work, compound a2 was found with higher inhibition activity against laccase and antifungal activity than laccase inhibitor PMDD-5Y. The introduction of hydrogen-bonded receptors in the amino part was found to be beneficial in improving laccase inhibitory activity by target-based-biological rational design. In this work, the hydrogen-bonded receptors morpholine and piperazine were introduced for structure optimization to enhancing biological activity. RESULTS: Enzyme activity tests indicated that all target compounds had inhibitory activity against laccase, and some compounds exhibited better activity against laccase than a2, it was further verified that the introduction of hydrogen-bonded receptors in the amino portion could enhance the laccase inhibitory activity of target compounds. Most compounds showed excellent antifungal activities in vitro. Compound m14 displayed good activity against Magnaporthe oryzae both in vitro and in vivo. The scanning electron microscopy (SEM) analysis showed that the mycelium of M. oryzae treated with m14 were destroyed. Molecular docking revealed the binding mode between laccase and target compounds. CONCLUSION: Thirty-eight compounds were synthesized and showed good inhibitory activity against laccase, the introduction of morpholine and piperazine in the amino part was beneficial to improve antifungal activity and laccase activity. Further validation of laccase as a potential target for rice blast control, while m14 can be used as a candidate compound for the control of rice blast. © 2023 Society of Chemical Industry.


Assuntos
Antifúngicos , Magnaporthe , Antifúngicos/química , Lacase/metabolismo , Simulação de Acoplamento Molecular , Morfolinas/metabolismo , Piperazinas/metabolismo
3.
Xenobiotica ; 52(8): 904-915, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36149349

RESUMO

In vitro incubation of the bacterial ß-glucuronidase inhibitor UNC10201652 (4-(8-(piperazin-1-yl)-1,2,3,4-tetrahydro-[1,2,3]triazino[4',5':4,5]thieno[2,3-c]isoquinolin-5-yl)morpholine) with mouse, rat, and human liver microsomes and hepatocytes generated metabolites at multiple sites via deethylations, oxidations and glucuronidation.Two UNC10201652 metabolites were detected in human, and four in mouse and rat liver microsomal incubations. Intrinsic clearances of UNC10201652 in human, mouse, and rat liver microsomes were 48.1, 115, and 194 µL/min/mg respectively.Intrinsic clearances for human, mouse, and rat hepatocytes were 20.9, 116, and 140 µL/min/106 cells respectively and 24 metabolites were characterised: 9 for human and 11 for both rodent species.Plasma clearance was 324.8 mL/min/kg with an elimination half-life of 0.66 h following IV administration of UNC10201652 to Swiss Albino mice (3 mg/kg). Pre-treatment with 1-aminobenzotriazole (ABT) decreased clearance to 127.43 mL/min/kg, increasing the t1/2 to 3.66 h.Comparison of profiles after oral administration of UNC10201652 to control and pre-treated mice demonstrated a large increase in Cmax (from 15.2 ng/mL to 184.0 ng/mL), a delay in Tmax from 0.25 to 1 h and increased AUC from 20.1 to 253 h ng/ml. ABT pre-treatment increased oral bioavailability from 15% to >100% suggesting that CYP450's contributed significantly to UNC10201652 clearance in mice.


Assuntos
Inibidores Enzimáticos , Animais , Humanos , Camundongos , Ratos , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacocinética , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Morfolinas/metabolismo , Morfolinas/farmacologia , Piperazinas/metabolismo , Piperazinas/farmacocinética
4.
Nucl Med Biol ; 108-109: 24-32, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35248850

RESUMO

Monoacylglycerol lipase (MAGL) is a serine hydrolase that plays an important role in the endocannabinoid degradation in the brain. It has recently emerged as a promising therapeutic target in the treatment of neuroinflammatory and neurodegenerative diseases, such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Development of MAGL-specific radioligands for non-invasive imaging by positron-emission tomography (PET) would deepen our knowledge on the relevant pathological changes in diseased states and accelerate drug discovery. In this study, we report the selection and synthesis of two morpholine-3-one derivatives as potential reversible MAGL PET tracer candidates based on their multiparameter optimization scores. Both compounds ([11C]1, [11C]2) were radiolabeled by direct [11C]CO2 fixation and the in vitro autoradiographic studies demonstrated their specificity and selectivity towards MAGL. Dynamic PET imaging using MAGL knockout and wild-type mice confirmed the in vivo specificity of [11C]2. Our preliminary results indicate that morpholine-3-one derivative [11C]2 ([11C]RO7279991) binds to MAGL in vivo, and this molecular scaffold could serve as an alternative lead structure to image MAGL in the central nervous system.


Assuntos
Monoacilglicerol Lipases , Tomografia por Emissão de Pósitrons , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Endocanabinoides/metabolismo , Inibidores Enzimáticos/metabolismo , Camundongos , Monoacilglicerol Lipases/química , Monoacilglicerol Lipases/metabolismo , Morfolinas/metabolismo , Tomografia por Emissão de Pósitrons/métodos
5.
Sci Total Environ ; 822: 153585, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121040

RESUMO

Dimethomorph (DMM), an effective and broad-spectrum fungicide applied in agriculture, is toxic to environments and living organisms due to the hazardous nature of its toxic residues. This study aims to investigate the human cytochrome P450 enzyme (CYP)-mediated oxidative metabolism of DMM by combining experimental and computational approaches. Dimethomorph was metabolized predominantly through a two-step oxidation process mediated by CYPs, and CYP3A was identified as the major contributor to DMM sequential oxidative metabolism. Meanwhile, DMM elicited the mechanism-based inactivation (MBI) of CYP3A in a suicide manner, and the iminium ion and epoxide reactive intermediates generated in DMM metabolism were identified as the culprits of MBI. Furthermore, three common pesticides, prochloraz (PCZ), difenoconazole (DFZ) and chlorothalonil (CTL), could significantly inhibit CYP3A-mediated DMM metabolism, and consequently trigger elevated exposure to DMM in vivo. Computational studies elucidated that the differentiation effects in charge distribution and the interaction pattern played crucial roles in DMM-induced MBI of CYP3A4 during sequential oxidative metabolism. Collectively, this study provided a global view of the two-step metabolic activation process of DMM mediated by CYP3A, which was beneficial for elucidating the environmental fate and toxicological mechanism of DMM in humans from a new perspective.


Assuntos
Citocromo P-450 CYP3A , Morfolinas , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Morfolinas/metabolismo , Oxirredução
6.
Mol Biol Rep ; 49(2): 1223-1232, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792729

RESUMO

BACKGROUND: Female breast cancer has become the most commonly diagnosed cancer worldwide. As a tumor suppressor, estrogen receptor ß (ERß) can be potentially targeted for breast cancer therapy. METHODS AND RESULTS: TAD1822-7 was evaluated for ERß-mediated autophagy and cell death using cell proliferation assay, Annexin V/PI staining, immunofluorescence, western blotting, ERß siRNA, ERß plasmid transfection and hypoxia cell models. TAD1822-7 upregulated ERß causing cell death and induced mitochondrial dysfunction and autophagy companied with mitochondrial located ERß. Enhanced levels of microtubule associated protein1 light chain 3 (LC3)-II and p62/SQSTM1 (p62) indicated that TAD1822-7 blocked the late-stage autolysosome formation, leading to cell death. Mechanistically, TAD1822-7-induced cell death was mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathways. Moreover, TAD1822-7 modulated hypoxia inducible factor (HIF) functions and autophagy via the inhibition of HIF-1ß in the context of hypoxia-induced autophagy. ERß overexpression and ERß agonist showed similar effects, whereas ERß siRNA abrogated TAD1822-7-induced cell death, the inhibition of PI3K/AKT pathway and autophagy. The involvement of PI3K/AKT pathway and autophagy was also demonstrated in TAD1822-7-treated hypoxic breast cancer cells. CONCLUSIONS: These findings provide new insight into the mechanism underlying the inhibitory effects of TAD1822-7 via ERß-mediated pathways in breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Receptor beta de Estrogênio/metabolismo , Morfolinas/farmacologia , Compostos de Fenilureia/farmacologia , Alcaloides , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Compostos de Bifenilo , Neoplasias da Mama/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor beta de Estrogênio/fisiologia , Feminino , Humanos , Morfolinas/metabolismo , Compostos de Fenilureia/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ureia
7.
Biomolecules ; 11(12)2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34944543

RESUMO

Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.


Assuntos
Descoberta de Drogas , Gasotransmissores/farmacologia , Sulfeto de Hidrogênio/farmacologia , Animais , Benzenossulfonatos/administração & dosagem , Benzenossulfonatos/metabolismo , Benzenossulfonatos/farmacologia , Benzenossulfonatos/uso terapêutico , Química Farmacêutica , Gasotransmissores/administração & dosagem , Gasotransmissores/metabolismo , Gasotransmissores/uso terapêutico , Humanos , Sulfeto de Hidrogênio/administração & dosagem , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/uso terapêutico , Morfolinas/administração & dosagem , Morfolinas/metabolismo , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Naproxeno/administração & dosagem , Naproxeno/análogos & derivados , Naproxeno/metabolismo , Naproxeno/farmacologia , Naproxeno/uso terapêutico , Compostos Organotiofosforados/administração & dosagem , Compostos Organotiofosforados/metabolismo , Compostos Organotiofosforados/farmacologia , Compostos Organotiofosforados/uso terapêutico
8.
World J Microbiol Biotechnol ; 38(1): 1, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34817662

RESUMO

Beauvericin and bassiatin are two valuable compounds with various bioactivities biosynthesized by the supposedly same nonribosomal peptide synthetase BbBEAS in entomopathogenic fungus Beauveria bassiana. To evaluate the regulatory effect of global regulator LaeA on their production, we constructed BbLaeA gene deletion and overexpression mutants, respectively. Deletion of BbLaeA resulted in a decrease of the beauvericin titer, while overexpression of BbLaeA increased its production by 1-2.26 times. No bassiatin could be detected in ΔBbLaeA and wild type strain of B. bassiana, but 4.26-5.10 µg/mL bassiatin was produced in OE::BbLaeA. Furthermore, additional metabolites with increased production in OE::BbLaeA were isolated and identified as primary metabolites. Among them, 4-hydroxyphenylacetic acid showed antibacterial bioactivity against Ralstonia solanacearum. These results indicated that BbLaeA positively regulates the production of beauvericin, bassiatin and various bioactive primary metabolites.


Assuntos
Beauveria/crescimento & desenvolvimento , Depsipeptídeos/biossíntese , Proteínas Fúngicas/genética , Morfolinas/metabolismo , Beauveria/genética , Beauveria/metabolismo , Proteínas Fúngicas/metabolismo , Deleção de Genes , Fenilacetatos/metabolismo , Fenilacetatos/farmacologia , Ralstonia solanacearum/efeitos dos fármacos , Ralstonia solanacearum/crescimento & desenvolvimento
9.
Molecules ; 26(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34500798

RESUMO

The marine-facultative Aspergillus sp. MEXU 27854, isolated from the Caleta Bay in Acapulco, Guerrero, Mexico, has provided an interesting diversity of secondary metabolites, including a series of rare dioxomorpholines, peptides, and butyrolactones. Here, we report on the genomic data, which consists of 11 contigs (N50~3.95 Mb) with a ~30.75 Mb total length of assembly. Genome annotation resulted in the prediction of 10,822 putative genes. Functional annotation was accomplished by BLAST searching protein sequences with different public databases. Of the predicted genes, 75% were assigned gene ontology terms. From the 67 BGCs identified, ~60% belong to the NRPS and NRPS-like classes. Putative BGCs for the dioxomorpholines and other metabolites were predicted by extensive genome mining. In addition, metabolomic molecular networking analysis allowed the annotation of all isolated compounds and revealed the biosynthetic potential of this fungus. This work represents the first report of whole-genome sequencing and annotation from a marine-facultative fungal strain isolated from Mexico.


Assuntos
Aspergillus/metabolismo , Metabolômica , Morfolinas/metabolismo , Peptídeos Cíclicos/metabolismo , Aspergillus/genética , Aspergillus/isolamento & purificação , México , Estrutura Molecular , Morfolinas/química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética
10.
Nat Struct Mol Biol ; 28(10): 789-798, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556870

RESUMO

Human checkpoint kinase ataxia telangiectasia-mutated (ATM) plays a key role in initiation of the DNA damage response following DNA double-strand breaks. ATM inhibition is a promising approach in cancer therapy, but, so far, detailed insights into the binding modes of known ATM inhibitors have been hampered due to the lack of high-resolution ATM structures. Using cryo-EM, we have determined the structure of human ATM to an overall resolution sufficient to build a near-complete atomic model and identify two hitherto unknown zinc-binding motifs. We determined the structure of the kinase domain bound to ATPγS and to the ATM inhibitors KU-55933 and M4076 at 2.8 Å, 2.8 Å and 3.0 Å resolution, respectively. The mode of action and selectivity of the ATM inhibitors can be explained by structural comparison and provide a framework for structure-based drug design.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Domínio Catalítico , Microscopia Crioeletrônica , Humanos , Modelos Moleculares , Morfolinas/química , Morfolinas/metabolismo , Mutação , Neoplasias/genética , Conformação Proteica , Pironas/química , Pironas/metabolismo
11.
Arch Toxicol ; 95(11): 3539-3557, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34453555

RESUMO

Intake of synthetic cannabinoids (SC), one of the largest classes of new psychoactive substances, was reported to be associated with acute liver damage but information about their hepatotoxic potential is limited. The current study aimed to analyze the hepatotoxicity including the metabolism-related impact of JWH-200, A-796260, and 5F-EMB-PINACA in HepG2 cells allowing a tentative assessment of different SC subclasses. A formerly adopted high-content screening assay (HCSA) was optimized using a fully automated epifluorescence microscope. Metabolism-mediated effects in the HCSA were additionally investigated using the broad CYP inhibitor 1-aminobenzotriazole. Furthermore, phase I metabolites and isozymes involved were identified by in vitro assays and liquid chromatography-high-resolution tandem mass spectrometry. A strong cytotoxic potential was observed for the naphthoylindole SC JWH-200 and the tetramethylcyclopropanoylindole compound A-796260, whereas the indazole carboxamide SC 5F-EMB-PINACA showed moderate effects. Numerous metabolites, which can serve as analytical targets in urine screening procedures, were identified in pooled human liver microsomes. Most abundant metabolites of JWH-200 were formed by N-dealkylation, oxidative morpholine cleavage, and oxidative morpholine opening. In case of A-796260, most abundant metabolites included an oxidative morpholine cleavage, oxidative morpholine opening, hydroxylation, and dihydroxylation followed by dehydrogenation. Most abundant 5F-EMB-PINACA metabolites were generated by ester hydrolysis plus additional steps such as oxidative defluorination and hydroxylation. To conclude, the data showed that a hepatotoxicity of the investigated SC cannot be excluded, that metabolism seems to play a minor role in the observed effects, and that the extensive phase I metabolism is mediated by several isozymes making interaction unlikely.


Assuntos
Canabinoides/metabolismo , Canabinoides/toxicidade , Ciclopropanos/metabolismo , Ciclopropanos/toxicidade , Morfolinas/metabolismo , Morfolinas/toxicidade , Cromatografia Líquida/métodos , Células Hep G2 , Humanos , Isoenzimas/análise , Microssomos Hepáticos/metabolismo , Espectrometria de Massas em Tandem/métodos
12.
Neurotherapeutics ; 18(2): 1039-1063, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786806

RESUMO

Huntington's disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


Assuntos
Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Isoleucina/análogos & derivados , Morfolinas/metabolismo , Morfolinas/uso terapêutico , Neuroimagem/métodos , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Estudos Transversais , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Huntington/tratamento farmacológico , Isoleucina/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Morfolinas/farmacologia
14.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33627403

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle degeneration and weakness due to mutations in the dystrophin gene. The symptoms of DMD share similarities with those of accelerated aging. Recently, hydrogen sulfide (H2S) supplementation has been suggested to modulate the effects of age-related decline in muscle function, and metabolic H2S deficiencies have been implicated in affecting muscle mass in conditions such as phenylketonuria. We therefore evaluated the use of sodium GYY4137 (NaGYY), a H2S-releasing molecule, as a possible approach for DMD treatment. Using the dys-1(eg33) Caenorhabditis elegans DMD model, we found that NaGYY treatment (100 µM) improved movement, strength, gait, and muscle mitochondrial structure, similar to the gold-standard therapeutic treatment, prednisone (370 µM). The health improvements of either treatment required the action of the kinase JNK-1, the transcription factor SKN-1, and the NAD-dependent deacetylase SIR-2.1. The transcription factor DAF-16 was required for the health benefits of NaGYY treatment, but not prednisone treatment. AP39 (100 pM), a mitochondria-targeted H2S compound, also improved movement and strength in the dys-1(eg33) model, further implying that these improvements are mitochondria-based. Additionally, we found a decline in total sulfide and H2S-producing enzymes in dystrophin/utrophin knockout mice. Overall, our results suggest that H2S deficit may contribute to DMD pathology, and rectifying/overcoming the deficit with H2S delivery compounds has potential as a therapeutic approach to DMD treatment.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Distrofina/genética , Sulfeto de Hidrogênio/farmacologia , Mitocôndrias Musculares/efeitos dos fármacos , Morfolinas/farmacologia , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular Animal/tratamento farmacológico , Compostos Organofosforados/farmacologia , Compostos Organotiofosforados/farmacologia , Tionas/farmacologia , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Distrofina/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Humanos , Sulfeto de Hidrogênio/metabolismo , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Endogâmicos mdx , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Morfolinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Compostos Organofosforados/metabolismo , Compostos Organotiofosforados/metabolismo , Prednisona/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Tionas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Utrofina/deficiência , Utrofina/genética
15.
J Struct Biol ; 213(2): 107710, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33610655

RESUMO

KW-2478 is a promising anti-cancer lead compound targeting to the molecular chaperone heat shock protein 90 N (Hsp90N). Absence of complex crystal structure of Hsp90N-KW-2478, however, hampered further structure optimization of KW-2478 and understanding on the molecular interaction mechanism. Herein, a high-resolution complex crystal structure of Hsp90N-KW-2478 was determined by X-ray diffraction (XRD, resolution limit: 1.59 Å; PDB ID: 6LT8) and their molecular interaction was analyzed in detail, which suggested that KW-2478 perfectly bound in the N-terminal ATP-binding pocket of Hsp90 to disable its molecular chaperone function, therefore suppressed or killed cancer cells. The results from thermal shift assay (TSA, ΔTm, 18.82 ± 0.51 °C) and isothermal titration calorimetry (ITC, Kd, 7.30 ± 2.20 nM) suggested that there is an intense binding force and favorable thermodynamic changes during the process of KW-2478 binding with Hsp90N. Additionally, KW-2478 exhibited favorable anti-NSCLC activity in vitro, as it inhibited cell proliferation (IC50, 8.16 µM for A549; 14.29 µM for H1975) and migration, induced cell cycle arrest and promoted apoptosis. Thirty-six novel KW-2478 derivatives were designed, based on the complex crystal structure and molecular interaction analysis of Hsp90N-KW-2478 complex. Among them, twenty-two derivatives exhibited increased binding force with Hsp90N evaluated by molecular docking assay. The results would provide new guidance for anti-NSCLC new drug development based on the lead compound KW-2478.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/química , Morfolinas/química , Morfolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Calorimetria , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Ligação de Hidrogênio , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Simulação de Acoplamento Molecular , Morfolinas/metabolismo , Estabilidade Proteica , Relação Estrutura-Atividade
16.
Cell Death Dis ; 12(1): 85, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446653

RESUMO

Phosphoinositide-3 kinase alpha-specific inhibitors (PI3Kαi) displayed promising potential for the treatment of esophageal squamous cell carcinoma (ESCC) with frequent activation in PI3K signaling. However, acquired resistance is likely to develop and limit the efficacy of PI3Kαi like other targeted therapies. To identify genomic adaptation to PI3Kαi, we applied whole-genome sequencing and detected gene mutation and amplification in four lines of ESCC cells established with adapted resistance to a novel PI3Kαi CYH33. Particularly, HRASG12S mutation was found in KYSE180C cells. Overexpression of HRASG12S in ESCC parental cells rendered resistance to CYH33. By contrast, down-regulation of HRASG12S restored the sensitivity of KYSE180C1 cells to CYH33, and combination of CYH33 and MEK162 displayed synergistic effect against KYSE180C1 cells and xenografts. Furthermore, elevated mTORC1, mitogen-activated protein kinase (MAPK), and c-Myc signaling pathways were found in resistant cells by RNA sequencing and combination of CYH33 and RAD001, MEK162, or OTX015 overcame the resistance to CYH33, which was accompanied with enhanced inhibition on S6, extracellular signal-regulated kinase 1 (ERK), or c-Myc, respectively. Overall, we characterized the adaptations to PI3Kαi in ESCC cells and identified combinatorial regimens that may circumvent resistance.


Assuntos
Carcinoma de Células Escamosas do Esôfago/genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Morfolinas/metabolismo , Oncogenes/genética , Piperazinas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Pirróis/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Transcriptoma , Transfecção
17.
Bioorg Chem ; 107: 104524, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33317836

RESUMO

The synthesized Schiff Bases were reacted with formaldehyde and secondary amine such as 2,6-dimethylmorpholine to afford N-Mannich bases through the Mannich reaction. 3-Substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4) were treated with 2,6-dimethylmorpholine in the presence of formaldehyde to synthesize eight new 1-(2,6-dimethylmorpholino-4-yl-methyl)-3-substitued-4-(4-hydroxybenzylidenamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones (4a-h). The structures of the synthesized eight new compounds were characterized using IR, 1H NMR, 13C NMR, and HR-MS spectroscopic methods. Synthesized compounds inhibitory activity determined against the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and glutathione S-transferase (GST) enzymes with Ki values in the range 25.23-42.19 µM for AChE, 19.37-34.22 µM for BChE, and 21.84-41.14 µM for GST, respectively. Binding scores of most active inhibitors against AChE, BChE, and GST enzymes were detected as -10.294 kcal/mol, -9.562 kcal/mol, and -7.112 kcal/mol, respectively. The hydroxybenzylidene moiety of the most active inhibitors caused to inhibition of the enzymes through hydrophobic interaction and hydrogen bond.


Assuntos
Inibidores da Colinesterase/farmacologia , Bases de Mannich/farmacologia , Morfolinas/farmacologia , Bases de Schiff/farmacologia , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Butirilcolinesterase/química , Butirilcolinesterase/metabolismo , Células CACO-2 , Domínio Catalítico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Cães , Desenho de Fármacos , Ensaios Enzimáticos , Glutationa Transferase/antagonistas & inibidores , Glutationa Transferase/química , Glutationa Transferase/metabolismo , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Células Madin Darby de Rim Canino , Bases de Mannich/síntese química , Bases de Mannich/metabolismo , Simulação de Acoplamento Molecular , Morfolinas/síntese química , Morfolinas/metabolismo , Ligação Proteica , Bases de Schiff/síntese química , Bases de Schiff/metabolismo
18.
J Med Chem ; 63(22): 13595-13617, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33166139

RESUMO

The mechanistic target of rapamycin (mTOR) pathway is hyperactivated in cancer and neurological disorders. Rapalogs and mTOR kinase inhibitors (TORKi) have recently been applied to alleviate epileptic seizures in tuberous sclerosis complex (TSC). Herein, we describe a pharmacophore exploration to identify a highly potent, selective, brain penetrant TORKi. An extensive investigation of the morpholine ring engaging the mTOR solvent exposed region led to the discovery of PQR626 (8). 8 displayed excellent brain penetration and was well-tolerated in mice. In mice with a conditionally inactivated Tsc1 gene in glia, 8 significantly reduced the loss of Tsc1-induced mortality at 50 mg/kg p.o. twice a day. 8 overcomes the metabolic liabilities of PQR620 (52), the first-in-class brain penetrant TORKi showing efficacy in a TSC mouse model. The improved stability in human hepatocytes, excellent brain penetration, and efficacy in Tsc1GFAPCKO mice qualify 8 as a potential therapeutic candidate for the treatment of neurological disorders.


Assuntos
Encéfalo/metabolismo , Morfolinas/administração & dosagem , Morfolinas/metabolismo , Doenças do Sistema Nervoso/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Administração Oral , Animais , Encéfalo/efeitos dos fármacos , Cães , Feminino , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Morfolinas/química , Doenças do Sistema Nervoso/tratamento farmacológico , Ratos , Ratos Sprague-Dawley
19.
Sci Rep ; 10(1): 20322, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230162

RESUMO

Longitudinal preclinical and clinical studies suggest that Aß drives neurite and synapse degeneration through an array of tau-dependent and independent mechanisms. The intracellular signaling networks regulated by the p75 neurotrophin receptor (p75NTR) substantially overlap with those linked to Aß and to tau. Here we examine the hypothesis that modulation of p75NTR will suppress the generation of multiple potentially pathogenic tau species and related signaling to protect dendritic spines and processes from Aß-induced injury. In neurons exposed to oligomeric Aß in vitro and APP mutant mouse models, modulation of p75NTR signaling using the small-molecule LM11A-31 was found to inhibit Aß-associated degeneration of neurites and spines; and tau phosphorylation, cleavage, oligomerization and missorting. In line with these effects on tau, LM11A-31 inhibited excess activation of Fyn kinase and its targets, tau and NMDA-NR2B, and decreased Rho kinase signaling changes and downstream aberrant cofilin phosphorylation. In vitro studies with pseudohyperphosphorylated tau and constitutively active RhoA revealed that LM11A-31 likely acts principally upstream of tau phosphorylation, and has effects preventing spine loss both up and downstream of RhoA activation. These findings support the hypothesis that modulation of p75NTR signaling inhibits a broad spectrum of Aß-triggered, tau-related molecular pathology thereby contributing to synaptic resilience.


Assuntos
Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/efeitos adversos , Isoleucina/análogos & derivados , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Receptores de Fator de Crescimento Neural/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Hipocampo/embriologia , Isoleucina/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Morfolinas/metabolismo , Neuritos/metabolismo , Fosforilação/efeitos dos fármacos , Transfecção , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
20.
Sci Rep ; 10(1): 12158, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32699312

RESUMO

There has been controversy over the cardiovascular safety of domperidone, attributable to the lack of a well-designed study as well as inconsistent results. This study aimed to examine the risk of severe domperidone-induced ventricular arrhythmia (VA), compared to mosapride, itopride, or non-use of all three prokinetics, in the general population. We conducted a population-based, self-controlled case series analysis. Enrolled subjects were individuals who were diagnosed with severe VA and were prescribed domperidone, mosapride, or itopride from 2003 to 2013 in the National Health Insurance Service-National Sample Cohort. The incidence rate ratio for severe VA was measured during exposure to prokinetics and compared with unexposed periods and itopride (no-proarrhythmic effect)-exposure periods, as control. A total of 2,817 subjects were included. Domperidone, mosapride, or itopride use was associated with increased risk of severe VA, compared with non-use (adjusted incidence rate ratios (IRR) of 1.342 (95% CI 1.096-1.642), 1.350 (95% CI 1.105-1.650), and 1.486 (95% CI 1.196-1.845), respectively). The risk of severe domperidone-induced VA was lower, compared to that of itopride [adjusted IRR of 0.548 (95% CI 0.345-0.870)]. Of the subjects who had been prescribed all three prokinetics, domperidone-exposure was associated with a lower risk of severe VA, compared to itopride-exposure (crude IRR, 0.571; 0.358-0.912). Mosapride-exposure did not show IRR difference for severe VA, compared to itopride-exposure. Domperidone, mosapride, or itopride use is associated with an increased risk of severe VA. However, the magnitude of association was modest and domperidone use does not increase further the risk, compared with other prokinetics.


Assuntos
Antieméticos/efeitos adversos , Arritmias Cardíacas/etiologia , Domperidona/efeitos adversos , Adolescente , Adulto , Idoso , Antieméticos/metabolismo , Antieméticos/uso terapêutico , Arritmias Cardíacas/epidemiologia , Arritmias Cardíacas/patologia , Benzamidas/efeitos adversos , Benzamidas/metabolismo , Benzamidas/uso terapêutico , Compostos de Benzil/efeitos adversos , Compostos de Benzil/metabolismo , Compostos de Benzil/uso terapêutico , Criança , Pré-Escolar , Bases de Dados Factuais , Domperidona/metabolismo , Domperidona/uso terapêutico , Feminino , Humanos , Incidência , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Morfolinas/efeitos adversos , Morfolinas/metabolismo , Morfolinas/uso terapêutico , Fatores de Risco , Índice de Gravidade de Doença , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...